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We report analytical results for the development of instability of an interface between two immiscible,
Newtonian fluid layers confined in a rotating annular Hele-Shaw cell. We perform a linear stability analysis and
focus our study on the influence of both Coriolis force and curvature parameters on the interface instability
growth rate. The results show that the Coriolis force does not alter the stability of a disturbance with a
particular wave number but reduces the maximum growth rate. The results related to the role played by the
confinement of the liquid layers are also shown to provide a modification of the fastest-growing mode and its
corresponding linear growth rate.
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I. INTRODUCTION

Several works have been devoted to analyze the interfa-
cial instability in an annular rotating Hele-Shaw cell both
theoretically and experimentally �1–9�. The fingering insta-
bility is driven by the density difference between the two
liquids: the interface between a heavy fluid �water� and a
light fluid �air� is unstable when the heavy fluid is acceler-
ated in the direction of the light fluid; this phenomenon is
called the Rayleigh-Taylor instability. This instability is also
accompanied by a radial viscous flow. The linear problem
which is restricted to the case of high density and high vis-
cosity contrast was performed by Schwartz �2�. In his work,
the Coriolis force is included in an ad hoc manner and it was
shown that a circular drop is unstable both to translation and,
depending on the rotation rate, to a number of fingering
modes. Later on, Miranda �3� considered the case where the
inner fluid is a magnetic liquid in the presence of an azi-
muthal external magnetic field. Using a linear stability analy-
sis and neglecting Coriolis force, he has determined the
growth rate when both centrifugal and magnetic forces are
included and has shown that the magnetic forces tend to
stabilize the interface. Recently, Gadêlha and Miranda �4�
carried out a linear and weakly nonlinear stability analysis of
interfacial instability in a rotating Hele-Shaw cell and have
examined the effects of viscosity contrast, surface tension
coefficient, and dimensionless gap spacing on finger compe-
tition. In this study the velocity gradients, which are related
to internal friction in the fluid, are taken into account in the
equilibrium condition. Following Schwartz �2�, Waters and
Cummings �5� have considered flow in a rotating Hele-Shaw
cell taking into account Coriolis forces. The exact solution of
the velocity field was determined and the value of the Eck-
man number corresponding to the fastest-growth rate was
obtained in the limit of high density and high viscosity con-
trast and compared with results of Schwartz �2�. More re-
cently, the same authors �12� have considered the interfacial
instability of an initially circular fluid-fluid interface to pro-

vide insights into the tissue growth in a rotating bioreactor.
They have developed a linear stability analysis where the
time-dependent inertia and Coriolis terms are retained. They
have addressed the case of a thin-disk reactor �Hele-Shaw
cell� with a vertical axis and have provided an implicit for-
mulation of the dispersion relation �see Eq. �3.26� in �12��.
The implicit formulation leading to the growth rate and the
phase modulation of the pertubation is due to the time-
dependent inertia. Waters and Cummings focused their dis-
cussion on the long-time-scale evolution and the short-time-
scale evolution of the instability. Nevertheless, they do not
include an inner radial confinement of the cell or take into
account the viscous stresses in the Laplace equation at the
interface. In this paper, we also consider an interface sepa-
rating two fluids of different or comparable viscosity in a
rotating Hele-Shaw cell. We thus undertake a linear stability
analysis to describe the pertubation of the interface. The
study aims to consider first the effect of inner and outer rigid
boundaries. Second, we review the Coriolis effects when the
time-dependent inertia is neglected. The results of the effect
of Coriolis force on the growth rate are compared with those
in �3,4� and in �12�.

II. LINEAR STABILITY ANALYSIS

Consider two immiscible, incompressible Newtonian liq-
uid layers confined in an annular Hele-Shaw cell �see Fig. 1�.
We denote by R1 and R2 the inner and outer radii of the cell,
respectively, and by e its thickness. The cell is subject to a
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FIG. 1. Sketch of a Hele-Shaw cell with two confined liquid
layers at the equilibrium. The aspect ratio �=e /R0 ,��1.
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constant angular velocity �=�k around its vertical symme-
try axis. We assume that the equilibrium corresponds to a
motionless state �Vi=0� and a circular interface, of radii R0,
between the inner layer �fluid 1� and outer one �fluid 2�. The
pressure, in the rest state, is given by

Pi�r� = �i�
2r2/2 + Ci, �1�

where �i is the density of the fluid �i=1,2� and Ci is a con-
stant. The pressure jump at the interface satisfies the
Laplace-Young equation given by

P1�R0� − P2�R0� = �/R0. �2�

Here, we denote by � the surface tension between the two
liquids.

Under these assumptions, the linear system describing the
evolution of disturbances upon the base-state approximation
is expressed in a reference frame rotating with the cell and is
given by the following Navier-Stokes equations �10� includ-
ing centrifugal and Coriolis forces:

� · vi = 0 �i = 1,2� , �3�

dvi

dt
= −

1

�i
� pi + �i�vi − � ∧ �� ∧ r� − 2� ∧ vi, �4�

where �i is the kinematics viscosity of fluid �i=1,2� and pi is
the hydrostatic pressure. As in the traditional Hele-Shaw
flow where the aspect ratio � of the cell is considered smaller
than unity, a first approximation is obtained from Eqs. �3�
and �4� as follows:

0 =
1

r

�

�r
�rui� +

1

r

�vi

�	
+

�wi

�z
, �5�

0 = −
�pi

�r
+ 
i

�2ui

�z2 + 2��vi, �6�

0 = −
1

r

�pi

�	
+ 
i

�2vi

�z2 − 2��ui, �7�

0 = −
�pi

�z
. �8�

Here, r designates the distance from the axis of rotation.
Using the nonslip boundary conditions at the horizontal
walls, ui=vi=0 at z= ±e /2, Eqs. �5�–�8� are integrated, with
respect to the variable z, to obtain the velocity field deter-
mined first in �11� and used in �5�. The vertically averaged
components of velocity can be written as

ūi�r,	� =
e2


i
�M1��i�

1

r

�pi

�	
+ M2��i�

�pi

�r
� ,

v̄i�r,	� =
e2


i
�M2��i�

1

r

�pi

�	
− M1��i�

�pi

�r
� , �9�

where

M1��i� =
1

8�i
2�− 1 +

sin��i�cos��i� + cosh��i�sinh��i�
2�i�cosh2��i� − sin2��i��

� ,

M2��i� =
1

8�i
2� sin��i�cos��i� − cosh��i�sinh��i�

2�i�cosh2��i� − sin2��i��
� .

Here, �i=1/ �2�Ei� and Ei=�i / ��e2� is the Eckman number
representing the ratio of viscous to Coriolis forces. One can
notice that the averaged velocity field obtained with this for-
mulation including Coriolis forces differs from the classical
Darcy’s law used by several authors �3,4,6,9� valid for small
rotation. Indeed, we verify that M1��i�→0 and M2��i�
→−1/12 when Ei→� leading to Darcy’s law: vi
= �−e2 /12
i��pi.

To investigate the dynamical evolution of the interface in
a rotating Hele-Shaw cell, we describe the instantaneous in-
terface in polar coordinates as R=R0+
�	 , t�, where 
�	 , t� is
an infinitesimal perturbation of the circular interface. Here-
after, we seek the solution of the linear problem in terms of
normal modes as

�ūi, v̄i,pi��r,	� = �ũi�r�, ṽi�r�, p̃i�r��ejn	,

with j2=−1. We denote by n the azimuthal wave number, and
it is an integer such as n�1. Using Eqs. �9� and averaging
the continuity equation with respect to the coordinate z, one
obtains

d2p̃i

dr2 +
1

r

dp̃i

dr
−

n2

r
p̃i = 0, �10�

and thus

p̃i�r� = Ci
1rn + Ci

2r−n, n � 1. �11�

The four constants are determined using boundary conditions
u1�R1�=u2�R2�=0 and the kinematics condition linearized at
the interface �
 /�t� ūi at r=R. To complete the set of equa-
tions, we must provide the dynamic boundary condition at
the interface �r=R�:

�P1 + p1� − �P2 + p2� + 2�
1
�ū1

�r
− 
2

�ū2

�r
� = � � · n .

�12�

The second term on the left-hand side of Eq. �12� represents
the stresses originated by normal velocity gradients. Alvarez-
Lacalle et al. �6� have shown that this additional term turns
out to be relevant because it introduces a dependence of the
linear growth rate on gap spacing e and contrast viscosity A.
Nevertheless, the correction affects only modes of large
wave number. The curvature of the interface is written in its
linearized form as

� · n = −
1

R0
�1 − �1 − n2�


�	,t�
R0

� .

The total pressure is linearized as follows:

�Pi + pi� = Pi�R0� + 	 �Pi

�r
	

r=R0


�	,t� + pi�R0� .

Finally Eq. �12� leads to the linear dimensional growth rate
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��n� =

̇n


n
=

�

R0
�2n�B − �n2 − 1��


2

1 − �2
2n� 1

IM2
+

�2
2n

IM2
*� −


1

1 − �1
2n� 1

IM1
+

�1
2n

IM1
*� + 2�n�2�
1�− 1 + nd1� − 
2�− 1 + nd2��

, �13�

where IM1=M2��1�+ jM1��1� and IM2=M2��2�+ jM1��2�,
and IM1

* and IM2
* are the complex conjugate of IM1 and IM2,

respectively. The quantities d1 and d2 are given by d1=
1+�1

2n

1−�1
2n

and d2=
1+�2

2n

1−�2
2n . The coefficients �1=R1 /R0 and �2=R2 /R0 rep-

resent the parameters of curvature of the inner and outer
circular boundaries, respectively, and B= � 1

�
��R0

3��1−�2��2�
is the Bond number. The parameter � enables to take or not
into account the viscous stress in the jump equation �12� ��
=0 when the viscous stress is not included and �=1 when the
viscous stress is considered�. Note that if we take �=0 and
�1=0, Eq. �13� can be written as

��n� =

�

R0
�2n�B − �n2 − 1��


2

1 − �2
2n� 1

IM2
+

�2
2n

IM2
*� − 
1

1

IM1

, �14�

which can be obtained from the recent paper of Waters and
Cummings �12�. So our equation �13� extends their recent
work by taking into account the effects of the containment
and the effects of the viscous normal stresses. Whatever the
considered case, one can note that the cutoff azimuthal mode
number ncut can be determined by Eq. �13� and ncut

=��B+1� as already shown by �4�. In the next sections, we
discuss the effect of the circular rigid boundaries and that of
Coriolis force on the instability.

III. EFFECT OF THE INNER AND OUTER BOUNDARIES
WITHOUT CORIOLIS FORCES „E1\� ,E2\�…

To analyze the influence of the curvatures on interface
instability, we consider the case in which the Coriolis forces
are neglected �M1��i�→0 and M2��i�→−1/12�. In this situ-
ation, the velocity field is given by Darcy’s law and the di-
mensionless growth rate derived from Eq. �13� is given by


̇n


n
� �̄�n� =

n�B − �n2 − 1��

ID +
�n�2

6
�nID + A�

, �15�

where �̄�n�= �12�
1+
2�R0
3 /e2����n�, ID= �d1−d2� /2

−A�d1+d2� /2, and A= �
2−
1� / �
2+
1� is the contrast vis-
cosity with −1�A�1. In the limit case corresponding to
d1=1��1→0� and d2=−1��2→��, we obtain the linear di-
mensionless growth rate obtained by Gadêlha and Miranda
�see Eq. �8� in �4�� and Alvarez-Lacalle et al. �see Eq. �18� in
�6��. In these works, the parameters of control are B �Bond
number� and A. Moreover, the addition of extra stresses in-

troduces a dependence on the aspect ratio of the cell �
=e /R0. Here, one can notice that Eq. �15� is conveniently
written in terms of five relevant dimensionless parameters of
the problem: B, A, �, �1, and �2. In our study, even if �=0,
the dependence on contrast viscosity A still remains origi-
nated by the curvature parameters �1 and �2 of the inner and
outer boundaries. The first information which can be ex-
tracted from the linear growth rate concerns the criterion of
instability, ��n��0, which is similar to that of previous stud-
ies �3,4,7� and it is not affected by the parameters A, �, �1,
and �2. Nevertheless, the amplitude of perturbation and par-
ticularly the fastest-growing mode nmax, defined as the inte-
ger mode n that provides the largest growth rate �max, depend
on the parameters A, �, �1, and �2. This mode tends to domi-
nate at the onset of the instability and determine the number
of the fingers in the final stage �7�.

Figure 2 depicts dimensionless growth rate �̄�n� versus
the wave number n with the presence of the inner boundary
�b�, the outer boundary �c�, and both inner and outer bound-
aries �d�. These curves are obtained for B=200, A=0, �1
=0.95, �2=1.1, and �=0.05. By inspecting Fig. 2, we can see
how the presence of radial walls to confine the Hele-Shaw

cell modifies the linear growth rate �̄�n�. Comparing our re-
sults with those of Gadêlha and Miranda �4� �curve �a� in
Fig. 2�, we observe that instability is damped in the presence
of boundaries. The largest growth rate �max decreases, and
the corresponding fastest-growing mode nmax is weakly
shifted to larger values of azimuthal wave numbers. In Fig.
3, we show, for different values of viscosity contrast A, the
evolution of the growth rate as a function of the azimuthal
wave number. We remark that �max decreases dramatically as
the viscosity contrast decreases from A=1 �
1=0� to
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FIG. 2. The effect of boundaries on the instability. �a� �1=0,
�2→� �4�, �b� �1=0, �2=1.1, �c� �1=0.95, �2→�, and �d� �1

=0.95, �2=1.1. All data are for B=200, A=0, and �=0.05.
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A=−1 �
2=0�. Therefore, we can see that viscosity ratio
plays a significant role even at the linear stage. Note that
similar conclusions can be found from the recent work of
Waters and Cummings �12� in the case �1=0 and �=0.

IV. EFFECTS OF CORIOLIS FORCE

The previous studies dealing with the Coriolis forces on
the stability of an interface in a rotating Hele-Shaw cell are
those performed by Schwartz �2� and Waters and Cummings
�5,12�. In the former paper, the Coriolis term is included in
an ad hoc manner. In their first paper, Waters and Cummings
have derived a model with the exact form of the Coriolis
term and have concluded that the model used by Schwartz
�2� can lead to appreciable errors. Nevertheless, both studies
have dealt with the case of high density and high viscosity
contrast �water-air for example�. In their second paper, Wa-
ters and Cummings have extended their results to the general
case of two viscous fluids. In the present study, the main
differences are the confinement of the cell and the use of an
interface boundary condition which incorporates stresses
originated from normal velocity gradients. And we restrict
our study to the case with no time-dependent inertia leading

to an explicit formulation of the dispersion relation com-
pared to �12�.

In such a configuration, the linear stability analysis pro-
vides that

Re���n�� =

n

E1
�1 −

n2 − 1

B
��1 −

�2

�1
��H

H2 + G2 ,

Im���n�� =

n

E1
�1 −

n2 − 1

B
��1 −

�2

�1
��G

H2 + G2 ,

with

H = �1 + A

1 − A

M2��2�d2

M1
2��2� + M2

2��2�
−

M2��1�d1

M1
2��1� + M2

2��1�

+ 2�n�2
�− 1 + nd1� −
1 + A

1 − A
�− 1 + nd2��� ,

G = �−
1 + A

1 − A

M1��2�
M1

2��2� + M2
2��2�

+
M1��1�

M1
2��1� + M2

2��1�� .

We remark that in the presence of Coriolis forces, the
growth rate is complex and the imaginary part corresponds to
waves traveling in the azimuthal direction. In order to be as
clear as possible, we consider the stability of an interface
between two unbounded liquid layers ��1=0 and �2→��.
The case of high viscosity and density contrasts, A=−1
�
2=0�, �2=0 and �=0, was studied in �5�. Those authors
have given the variation of the dimensionless parameter
D= �1− ��2 /�1��H / �E1�H2+G2�� versus Reynolds number of
the inner fluid defined as Re1=1/ �12E1� and shown that the
growth rate is maximized for Re1=1/ �12E1�=0.423. Here
we are interested in the configuration where the outer fluid is
also viscous. In Figs. 4 and 5 we present a variation of the
previously mentioned parameter D versus the inner Reynolds
number Re1 for different values of contrast viscosity and for
�1 /�2=1000 and �1 /�2=1.5. We observe that the inner Rey-
nolds number for which the growth rate is maximized in-
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FIG. 4. Comparison of growth rate for different values of con-
trast viscosity and for �1 /�2=1000, �1=0, and �=0. Note that the
curve A=−1 should produce the same results of Waters and Cum-
mings �5�.
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FIG. 5. Comparison of growth rate for different values of con-
trast viscosity and for �1 /�2=1.5, �1=0, and �=0. These results can
be obtained from the recent paper of Waters and Cummings �12�.
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FIG. 3. The effect of contrast viscosity with the presence of the
inner boundary on the instability. All data are for B=200, �=0.05,
�1=0.95, and �2→�.
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creases with the contrast viscosity and the values of this
number are largest in the first case ��1 /�2=1000� than in the
second one ��1 /�2=1.5�. Indeed, when the viscosity of the
outer fluid increases, the maximum of growth rate is ob-
tained for fast rotations �small Eckman numbers�. This maxi-
mum is obtained, as expected, for more rapid rotations near
�1 /�2=1 �stable equilibrium configuration�.

Figure 6 shows for a water-air interface that Coriolis force
is stabilizing in the sense that the maximum growth rate
decreases. The physical reason for that is related to the large
friction at the horizontal walls which leads to the suppression
of inertial effects. Quite the same situation takes place in the
case of a porous medium when Darcy’s law is assumed for
the resistance force.

Figure 7 shows for a water-air interface that the term in-
cluding the viscous stresses ��=1 in Eq. �13�� turn out to be
relevant even at the linear stage. By introducing a depen-
dence on gap spacing e and contrast viscosity A as already
shown by Alvarez-Lacalle et al. �6� in a linear stability
analysis but not including Coriolis effects, this additional
term provides a significant correction to the relation obtained
by Waters and Cummings �12�. It tends to increase the
growth rate and to shift its maximum to higher values. So
one can note that the correction especially affects the mode
of large wave numbers.

V. CONCLUSION

In this study, we have conducted a linear stability analysis
of the behavior of a circular interface between two fluids
confined in a rotating annular Hele-Shaw cell. This theoreti-
cal approach has provided us the linear growth rate of the
perturbation for each wave number.

We have focused our analysis on both the effect of the
presence of circular rigid boundaries and that of Coriolis
force on the linear instability of the interface. Neglecting
these two contributions in our formulation leads to previous
results of Gadêlha and Miranda �4� or Alvarez-Lacalle et al.
�6� obtained for cases of low- and high-contrast viscosity.

Including the Coriolis terms in our study provides some
similar results presented by Waters and Cummings for high
viscosity contrast �5� and two viscous fluids �12�. The differ-
ences with these later studies lie in the fact that we neglect
the time-dependent inertia terms leading to an explicit for-
mulation of the growth rate, and we introduce an inner con-
finement and include the normal velocity gradient in the
Laplace equation at the interface. On the role played by the
rigid boundaries studied, for the sake of reliability, without
Coriolis forces, we have shown that the instability is damped
in the presence of walls. Moreover, we have seen that the
viscosity contrast plays a significant role even at the linear
stage. This point differs from the case without radial walls,
where this parameter affects the instability only when the
viscous stresses are taken into account at the interface �6�.
Nevertheless, this dependence on the viscosity contrast A
appears whatever the configuration when the Coriolis effects
are considered. To discuss the role played by the Coriolis
forces, we have considered the situation where the circular
rigid boundaries are missing and with no time-dependent in-
ertia in comparison with the work of Waters and Cummings
�12�. We also find that the Coriolis force tends to suppress
the maximum growth rate of instability. We have shown that
the inner Reynolds number, corresponding to the maximum
of growth rate, increases with contrast viscosity. These re-
sults are not explicitly discussed by Waters and Cummings
�12�. Finally, we outline the role played by the viscous
stresses which directly affects the amplitude of the growth
rate and the wave number corresponding to its maximum.
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FIG. 7. Water-air interface ��=0.072 N/m, R0=1 cm, e
=1.5 mm, B=200, �1=0, �2→��: variation of the dimensional
growth rate versus n in presence of Coriolis effects. �a� Dashed line:
without viscous stresses obtained either by Eq. �3.26� �12� or by Eq.
�13� of the present study with �=0. �b� Solid line: with Coriolis
forces and viscous stresses obtained by Eq. �13� of the present study
with �=1.
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FIG. 6. Water-air interface ��=0.072 N/m, R0=10 cm, e
=2 mm�: variation of the dimensional growth rate versus n �a� with-
out Coriolis forces �3,4� and �b� with Coriolis forces.
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